
Trajectory Planning for Racing Drones
Atharva Navsalkar

I. INTRODUCTION

Research in racing drones is gaining popularity mainly due
its immense application in agile drone flights, which have
seen very limited deployment in real world. Human pilots
have demonstrated the skills to fly quadrotors with extreme
speeds and limited visibility. Their autonomous counterparts
have not been even close in terms of performance. Typically,
racing drones recommended by Drone Racing League, a very
popular professional drone racing league, have top speeds of
around 150-180 kmph, with thrust to weight ratio of 7:1 for
a 1kg quad. Drones used in autonomous racing research and
competitions are comparatively less aggressive. For example,
the AlphaPilot Challenge provided a 3.4 kg drone with a
thrust to weight ratio of 1.4 [1]. A custom drone developed
by RPG Lab, University of Zurich, used in experimental
research, have the ratio of 4 and weight of 0.8kg [2].

The characteristics discussed previously mainly differ ac-
cording to the focus of the particular research goal. Au-
tonomous drone racing poses four key challenges -

1) Gate or Waypoint Detection: The drone requires
the pose of the gates with reasonable accuracy. Both
traditional computer vision and learning based methods
have been used in exiting research. Image Processing
techniques have been used to efficiently the gates [3],
with prior knowledge its structure. Others use CNNs
to approximate gate positions or its features [1], [4].

2) Localisation and Mapping: Drones typically use
Visual-inertial Odometry (VIO) [1], [4], [5], [3], to
estimate the state. Stereo cameras and depth cam-
eras are usually used to construct the map of the
environment. Works that focus the aspects of gate ad
waypoint detection and mapping, usually are incapable
of extremely agile flights.

3) Trajectory Generation: Another important focus area
trajectory generation for minimum lap times. Tech-
niques like optimization [2], [6], [5], and reinforcement
learning [7] have been primarily used in existing
research. Additionally, sampling-based search methods
[8], [1], [9] Research focusing on this aspect have
previously succeeded in matching the times of human
pilots, but work in an idealised environment with
motion capture system for accurate localisation.

Atharva Navsalkar is a final-year undergraduate student in the Department
of Mechanical Engineering, Indian Institute of Technology Kharagpur, India
anavsalkar@iitkgp.ac.in.

This work was carried out during the summer internship with Prof. David
Saussié, Department of Electrical Engineering, Polytechnique Montréal,
under the Mitacs Globalink Internship Program.

Code and additional videos can be accessed at
https://github.com/anavsalkar/race drone.

4) Control: Due to high speed and extreme orientation
flights, PID control results in poor performance. The
work [10] has been widely used to for trajectory track-
ing in SE(3). Differential-flatness of the quadrotor
inputs has been exploited in [11], [12] to design a non-
linear controller. Model predictive control [13], [14]
has also been increasingly used, thanks to its capability
of considering model dynamics and constraints.

Fig. 1. First person view from the drone while passing through a gate.

Fig. 2. External view of the drone and the track at same instance as above.

II. PRIOR WORK

The work [1] describes the techniques used in the Alph-
Pilot Drone Challenge, using only the onboard sensors.
The authors use CNN-based algorithm to detect the gate
corners and use them as features in the VIO pipeline to
minimise drifts. On the control side, they use a receding
horizon planner for few waypoints. Minimum time segments
are found by randomly sample the possible states at each
waypoint joined by a polynomial trajectory. This approach
has been demonstrated to work in real world conditions
without external measurements, but the lap times do not
compare close with the optimization-based techniques.

To attain the maximum potential of the drone, authors
in [2] resort to numerical optimization. They construct a

https://github.com/anavsalkar/race_drone

Fig. 3. Velocity values obtained by position measurements from an external motion capture system.

Fig. 4. Acceleration values obtained by position measurements from an external motion capture system.

Fig. 5. Visualisation of the drone position data captured via external motion
capture system.

single optimization problem for numerous laps, using multi-
ple shooting with constraints on passing through waypoints
and progress variables. The generated trajectory is tracked
using a nonlinear MPC and it consistently beat the expert
human pilots in similar conditions. But, this work uses states
estimation and gate poses provided by a external motion
capture system. Moreover, the solver time is in the order

of hours on a normal computer, making it infeasible for
real-time computation. This can serve as a baseline for other
methods for comparison though.

Authors in [8] use hierarchical approach to generate the
final trajectory. Additionally, multiple static obstacles are
considered along with waypoint requirements. Initially, mul-
tiple diverse paths are found using Probabilistic Roadmaps
and Dijkstra’s algorithm. These paths are then further used to
find point mass trajectory using gradient descent optimization
and velocity search for multiple waypoints. Final trajectory
is obtained using kinodynamics sampling-based method SST
[15] and is tracked using MPC.

The work [14] extends the traditional MPC framework
to combinely solve the planning and control problem. In
addition to the reference error cost, the authors propose
an additional cost for maximising the progress along the
path and minimizing the contour distance from the path. It
has been shown to effectively track dynamically infeasible
trajectories obtained from point mass model. Compared to
methods like [2], [7] which take long time to compute global
trajectories, MPCC [14] tracks trajectories generated in real-
time (but dynamically infeasible) to give comparable lap
times.

A very recent extension of the previous work [9] lever-
ages the MPCC [14] to track trajectories based on velocity
sampling search approach to efficiently obtain time-optimal

Fig. 6. High-fidelity graphics from Flightmare. Fig. 7. Dynamics simulation using Gazebo. Fig. 8. Trajectory visualisation in Rviz.

point-mass model trajectory. Additionally, the use of a more
recent solver ’HPIPM’ with an updated ’acados’ tool leads
to extremely fast computation. This is one of the most recent
work in this area.

Building on the advances in MPC, authors in [13] propose
a real-time approach that considers both waypoint con-
straints, spatial bounds and time optimality simultaneously.
The MPC problem minimizes the time with pose constraints
according to polyhedral tunnels joining the gates.

Most of the works assume the gates to be of sufficiently
large. Authors in [6] address the autonomous racing in
cluttered environments with narrow and oblique gaps. Full
trajectory optimization is used to plan trajectories in SE(3),
considering a polyhedral representation of the drone. More-
over, GPU-based computation is used for faster solver time.
Main focus of this work is safety in tracks with very narrow
and constrained gaps.

As an alternative to classic methods, the work [7] use
deep reinforcement learning to compute minimum-time tra-
jectories. A infinite-horizon Markov Decision Process defines
the problem with reward for path progress and distance from
waypoint centre. The action space consists of the directly the
rotor thrusts, without any additional controller. The policy
trained for any particular track has been showed to be close
to the times obtained using [2].

Another work [16] use CNN to map the ram image
data to a look-ahead waypoint. The CNN is trained using
expert policy to follow a global constrained minimum snap
trajectory [17]. During the final run, the next waypoint
output of the CNN is transformed into a smooth trajectory.
The time optimality of the trajectory is not considered, but
is capable of planning using onboard data. Reinforcement
Learning is increasingly used for control of systems with
complex dynamics or environment. Agile flights in cluttered
environments is a perfect use-case for such approach. The
work [18] combines the sample-based methods and rein-
forcement learning to generate minimum-time aggressive
trajectories. First, topological paths connecting the waypoint
and avoiding obstacles is obtained using a novel sampling
based method. Next, learning algorithm with proxy reward

for path progress maximization and obstacles avoidance is
deployed to generate the control policy.

As seen in [16], neural network is used to process high-
dimensional image data to low-dimensional outputs for MPC.
This uses both the advantages of learning interfaced with
optimization. In [19], author interface policy search (episodic
RL) with the MPC. Authors design algorithms to learn Gaus-
sian as well as neural network policies. Both simulations and
experimental results have been discussed for drones passing
through highly dynamic gates.

In terms of control, MPC and differential-flatness-based
control remain the most popular choice. Reference [20]
compares the performance of both these controllers. It is
found that both the methods have similar performance for
feasible trajectories, whereas MPC has an edge with model
uncertainty and external disturbances. Moreover, the authors
stress heavily on the choice of low-level controller affecting
system performance.

It can be clearly seen that the works with extremely
aggressive flights touching the limits of the system are mostly
based on external state estimation. The ones using onboard
sensor data only are limited in terms of aggressiveness.
Offline path planning is possible only when prior information
on the gate positions is known. In case it is unavailable,
learning based algorithms are usually used to detect the gates
and constructs a map. It is of primary importance that, for
a real-world experiments in uncontrolled environments, a
fast and iterative method must be used for flight robust to
disturbances, uncertain dynamics and state estimation drift.

For comparison with expert human pilots, authors in [2]
capture data from professional drone racing pilots using a
motion capture system for multiple laps. Open-source dataset
for flight data from two pilots has been made available.
Figures 3, 4 and 5 represent the captured data. The velocities
and accelerations have been obtained by discrete numerical
differentiation from the position data. The spike denote the
instances when the drone passes a gate, as human pilots
perform a high-jerk maneuver to point towards next gate. The
speed of the drone hovers around 10 ms−1, and acceleration
around 25 ms−2.

III. SIMULATION OVERVIEW

In this project, a realistic simulation framework is set up
that can be utilized to focus on all four aspects on drone
racing. For implementing the computer vision techniques
accurately, a photo-realistic simulator is necessary. Microsoft
Airsim [21] is one of the most popular simulators that uses
Unreal Game Engine to generate graphics. Despite its high-
fidelity graphics, it fails to match accuracy of the Gazebo
Physics simulator in terms of dynamics. On the other hand,
Gazebo fails to provide high quality graphics for computer
vision and training AI. Therefore, a hybrid approach is used
here, that simulates the dynamics on a physics simulator and
generates graphics using photo-realistic simulator. Flight-
mare [22], based on Unity game engine (see Fig. 6) is use
on top of the Gazebo simulator (see Fig. 7). The entire
control framework uses the high and low-level controller,
discussed in [11], [23]. Robot Operating System (ROS) is
used for communication between Flightmare, Gazebo and
autopilot controller. Figure 8 shows real-time visualization of
the global and predicted trajectory of the drone at an instance.

Fig. 9. Flowchart representing the flow of information in the code base.

Figure 9 depicts how various nodes in the code interact
with each other. Each node is denotes as a enclosed shape
with arrows showing the exchange of information. The nodes
in a circular shape (in violet) are run offline before starting
to execute trajectory. Initially, the user can specify the track
data on gate positions, or desired time segments to the racing
node (highlighted in violet). It obtains the complete trajectory
from the trajectory generation node. In this work, minimum
snap trajectory [17] method is used to generate polynomial
trajectories. The gate positions are expressed as orderly
sequence of waypoints. In total, these two nodes act as high-
level planner. The Autopilot node is the primary node re-
sponsible commanding the quadrotor in real-time. It consists
of a finite-state machines with modes such as, TAKEOFF,
LAND, GO TO POSE, EXECUTE TRAJECTORY, etc., and
ensures smooth transition between different states. As per
the current state of autopilot, it communicates the real-time
reference with the controller that finally computes the control
command. The use of two of the most commonly used

controllers viz., differential flatness-based controller (DFBC)
and nonlinear model predictive control (NMPC) have been
demonstrated further. For simulations, RotorS interface [24]
to the Gazebo loads the quadrotor model and publish the real-
time ground truth as obtained from Gazebo simulation, which
is used for feedback and Flightmare simulator to generate
graphics.

A. Differential Flatness-based Controller
Quadrotors have a unique (and useful) property of dif-

ferential flatness. This means that all the states x (that
include position, velocity, orientation and angular rates) can
be written as smooth functions of flat outputs and their
derivatives. For quadrotors, these flat outputs are position r
and yaw angle ψ (or heading direction). Hence, all the state
references can be calculated if a smooth trajectory is known
in terms of positions and heading angle,

xref ← DF([r, ψ]),

where DF() represents function to inversely calculate states
from differential flatness property. These references can be
tracked using commonly used PD controllers with feedfor-
ward terms for different components of the state vector.
This method is detailed in [11]. Additionally, a low-level
controller is required to get individual rotor speeds.

B. Model Predictive Control
Model Predictive Control (MPC) is a recursive finite-

horizon optimal control problem. Figure 10 depicts the
solution obtained for finite time horizon with a discrete time
sample. The predicted states using the dynamics model aim
to track the reference trajectory. Due to the use of numerical
optimization techniques, various constraints on states and
controls including the dynamics and limits can be applied.

Fig. 10. Visual representation of receding-horizon control or MPC. Image
obtained from Wikipedia.

The objectives function J(x,u,xref) corresponds to the
difference between current and the reference state, combined
with the control cost. The optimal control problem at time
step k given by

min
x,u

N∑
i=1

Jk+i|k(x,u,xref)

s.t. x(k + i+ 1|k) = f(x(k + i|k),u(k + i|k)),
x ∈ X , u ∈ U ,
for i ∈ {1, ..., N},

where f(x,u) describes the discrete-time nonlinear dynam-
ics of the systems, and X and U being the limits on states
and control inputs. This optimization problem is solved using
qpOASES [25] solver. More details can be obtained in [26].

Fig. 11. 3D visuals of the trajectory and gate positions.

C. Trajectory Generation

The high-level trajectory planner uses minimum snap
trajectory generation [17]. Snap is the second derivative of
acceleration, denoted by d4r

dt . When working with quadrotors,
we want to find a trajectory that minimizes the snap cost
function denoted by

r⋆(t) = argmin
r(t)

∫ t

0

∥r(4)∥2dt.

For this task, higher degree polynomials are used as basis
functions for trajectory segment between each waypoint. Af-
ter solving for the minimization problem, we get coefficients
for each segment, which can be used to calculate references,
smooth at least up to fourth order of derivative, at any given
time. This trajectory containing reference positions, veloci-
ties, jerks and snaps, is sent to the autopilot that executes
the trajectory. Figure 11 shows generated trajectory for the
particular gate positions of the racing track. The racing track
environment is made using gate positions obtained from a
recent reference [14].

D. Performance

Same track and trajectory is used to demonstrate both
the controllers described in previous subsections. Figures 12
and 13 show the X-Y plane projection of the trajectories
tracked by each of the controller. Both the controllers give
very good tracking performance even at high speeds. The
advantages of MPC are more observed when the high-
level trajectory violates systems limits, as MPC gives stable
flights for all scenarios. Certainly, MPC is a much more
computationally expensive, hence cannot be implemented
on smaller hardware. Also, the performance is sensitive to
tuning of the cost function. Hence, DFBC remains popular
for onboard implementation. Reference [20] analyses the
differences is great detail. Additional videos can be accessed
on the project Github page.

Fig. 12. 2D view of trajectory tracking using DFBC.

Fig. 13. 2D view of trajectory tracking using NMPC.

IV. CONCLUSION

To summarise the work, the primary goal and fundamental
challenges for autonomous drone racing have been discussed.
The existing research can be classified in four directions
namely, perception, localisation, trajectory generation and
control. Keeping the discussion focused on the later two as-
pects, the latest state-of-the-art research is discussed. Assum-
ing perfect knowledge of the surrounding, the autonomous
drones have been able to match the human potential. Large
scope still remains, as professional pilots only rely on real-
time vision data. Next, a modular framework has been estab-
lished that would be useful to conduct research on all four
aspects. Commonly used minimum snap trajectory is used,
combined with DFBC or NMPC controllers, demonstrate the
basic drone racing tasks and effectiveness of the simulation
framework.

Fig. 14. Screenshot of the real time data and graphics visualization on the computer during a racing mission.

REFERENCES

[1] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” Autonomous Robots, vol. 46, no. 1, pp. 307–320, 2022.

[2] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning
for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, p.
eabh1221, 2021.

[3] S. Li, M. M. Ozo, C. De Wagter, and G. C. de Croon, “Autonomous
drone race: A computationally efficient vision-based navigation and
control strategy,” Robotics and Autonomous Systems, vol. 133, p.
103621, 2020.

[4] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun,
and D. Scaramuzza, “Deep drone racing: From simulation to reality
with domain randomization,” IEEE Transactions on Robotics, vol. 36,
no. 1, pp. 1–14, 2019.

[5] F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen, “Teach-
repeat-replan: A complete and robust system for aggressive flight in
complex environments,” IEEE Transactions on Robotics, vol. 36, no. 5,
pp. 1526–1545, 2020.

[6] Z. Han, Z. Wang, N. Pan, Y. Lin, C. Xu, and F. Gao, “Fast-racing:
An open-source strong baseline for SE(3) planning in autonomous
drone racing,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 8631–8638, 2021.

[7] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Au-
tonomous drone racing with deep reinforcement learning,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 1205–1212.

[8] R. Penicka and D. Scaramuzza, “Minimum-time quadrotor waypoint
flight in cluttered environments,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 5719–5726, 2022.

[9] A. Romero, R. Penicka, and D. Scaramuzza, “Time-optimal online re-
planning for agile quadrotor flight,” arXiv preprint arXiv:2203.09839,
2022.

[10] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on se (3),” in 49th IEEE conference on decision
and control (CDC). IEEE, 2010, pp. 5420–5425.

[11] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness
of quadrotor dynamics subject to rotor drag for accurate tracking of
high-speed trajectories,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 620–626, 2017.

[12] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor
trajectories using incremental nonlinear dynamic inversion and differ-
ential flatness,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 3, pp. 1203–1218, 2020.

[13] J. Arrizabalaga and M. Ryll, “Towards time-optimal tunnel-following
for quadrotors,” arXiv preprint arXiv:2110.01351, 2021.

[14] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive
contouring control for time-optimal quadrotor flight,” IEEE Transac-
tions on Robotics, 2022.

[15] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal
sampling-based kinodynamic planning,” The International Journal of
Robotics Research, vol. 35, no. 5, pp. 528–564, 2016.

[16] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and
D. Scaramuzza, “Deep drone racing: Learning agile flight in dynamic
environments,” in Conference on Robot Learning. PMLR, 2018, pp.
133–145.

[17] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference
on robotics and automation. IEEE, 2011, pp. 2520–2525.

[18] R. Penicka, Y. Song, E. Kaufmann, and D. Scaramuzza, “Learn-
ing minimum-time flight in cluttered environments,” arXiv preprint
arXiv:2203.15052, 2022.

[19] Y. Song and D. Scaramuzza, “Policy search for model predictive
control with application to agile drone flight,” IEEE Transactions on
Robotics, 2022.

[20] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza,
“A comparative study of nonlinear mpc and differential-flatness-based
control for quadrotor agile flight,” IEEE Transactions on Robotics,
2022.

[21] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
service robotics. Springer, 2018, pp. 621–635.

[22] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Proceedings of the
2020 Conference on Robot Learning, 2021, pp. 1147–1157.

[23] M. Faessler, D. Falanga, and D. Scaramuzza, “Thrust mixing, satura-
tion, and body-rate control for accurate aggressive quadrotor flight,”
IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 476–482,
2016.

[24] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular
gazebo mav simulator framework,” in Robot operating system (ROS).
Springer, 2016, pp. 595–625.

[25] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpoases: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp.
327–363, 2014.

[26] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “Pampc: Perception-
aware model predictive control for quadrotors,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1–8.

	Introduction
	Prior Work
	Simulation Overview
	Differential Flatness-based Controller
	Model Predictive Control
	Trajectory Generation
	Performance

	Conclusion
	References

