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Drones have recently seen as strong rise in terms of popularity and deployment.

This is mainly due to their ability to traverse difficult environments. For advanced

use cases, autonomy and safe navigation in dynamic and uncertain environments

has become essential. The capabilities of the flying machines increase even more if

deployed in swarms or teams, adding additional need for coordination. This work

discusses the use of optimization-based model predictive control for such swarm to

navigate safely in cluttered environments. This work is of greater importance when

the obstacles have irregular shape difficult to approximate using ellipsoids or spheres.

This project furthers aims to address the challenge of distributed computation and

motion uncertainty in real world.
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Chapter 1

Introduction

1.1 Overview

Multi-robotic swarms, including drones, ground robots, or autonomous vehicles,

have seen tremendous development due to applications ranging from military, search

and rescue missions, cave explorations, indoor motion, or entertainment purposes.

Motion planning of multiple robots in such a diverse set of environments remains

an essential challenge. Each individual agent must safely avoid obstacles and other

members of the group. The real world is, however, not completely deterministic in

terms of both dynamics and state measurements. In this thesis, over the course of

the year, my aim is to develop and implement computationally efficient centralized

and distributed model predictive control (MPC) algorithms for risk-sensitive safe

navigation of multiple robots under uncertainty.

MPC has been widely used for drones and provides flexibility to modify the problem

formulations for different purposes. It is powerful tool that solves a finite horizon

numerical optimization problem repeatedly to compute the control commands. The

primary advantage of using MPC is its ability to accommodate various performance

metrics and state/input constraints. The real world systems have an element of

uncertainty and noise, and also surrounded by non-cooperative robots or obstacles.

To handle the uncertain motion of obstacles, I plan to develop collision avoidance

constraints in terms of conditional value-at-risk (CVaR) of the distance between full

1



Chapter 1. Introduction 2

dimensional controlled objects and obstacles (instead of conveniently assuming them

to be point-sized or make a conservative spherical/ellipsoid approximation). In order

to capture the uncertainty inherent in the environment, I plan to leverage recent

results in distributionally robust optimization to construct ambiguity sets for the

uncertainty distribution from observed data in an online manner. The proposed

scheme would provide rigorous (finite sample) guarantees on risk sensitive collision

avoidance.

For this part of the project, we focus on identifying the current research gaps in the

literature, and develop algorithms for deterministic multi-agent MPC. This report

primarily focuses on the centralised and decentralised methods based on separate

techniques. Results are presented for each of them based on realistic simulations on

Gazebo. We will then compare the benefits and limitations of both to proceed with

adding the uncertainty consideration. This chapter discussed the detailed literature

survey and specific project goals. The achievements and ongoing work is briefly

discussed in the last section of the chapter.

1.2 Literature Survey

Motion planning techniques for robotic teams have been thoroughly studied but some

important challenges still exist in collision avoidance for a large number of agents, as

reviewed in (Huang et al., 2019). Authors in (Luis et al., 2020) develop a distributed

MPC scheme for multiple robots to generate trajectories in real-time. Though the

approach has been shown to give excellent experimental results, other agents’ current

state (and planned states) have been assumed to be known to all agents for avoiding

collisions. This information might not be practically possible to communicate amongst

each other, making it challenging to implement in a decentralised manner. Moreover,

uncertainties in the actual motion of robots or other dynamic obstacles have not

been considered.

Reference (Park and Kim, 2020) develops a decentralised planner and constructs safe

corridors using linear constraints. The authors estimate the reachable area by limiting

the velocity or acceleration of other bodies, resulting in robust but conservative

constraints. Other optimization-based methods like (Zhang et al., 2020) assume static,
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deterministic, but complex environments to find the least intrusive trajectories by

solving MPC with signed-distance constraints formulation. One significant advantage

of this method is that all dimensions of robots are accounted for, which is essential for

large-sized robotic agents, but has been currently implemented for a single robot in a

2D world. Other works like (Zhu et al., 2021; Cong et al., 2021) use neural networks

to predict the motion of neighbouring robots. Both these works use MPC to impose

constraints using predicted states and work with decentralised computation. Robust

MPC approaches as studied in (Kamel et al., 2017) ensure guaranteed safety but

lead to a computationally expensive and overly conservative solution.

An alternative to model the uncertainty is using stochastic optimization. Given a

probability distribution of possible transitions, probabilistic chance-based constraints

can be applied to the MPC problem to limit the collision probability (Zhu and

Alonso-Mora, 2019). Building on this, the authors in (Castillo-Lopez et al., 2020)

propose tighter constraints for a single-agent with uncertain dynamic obstacles using

chance constraints. Another work (Arul and Manocha, 2021) discusses decentralised

implementation of MPC with probabilistic OCRA (Van Den Berg et al., 2011), which

basically computes a set of collision-free velocities. Authors in (Arul and Manocha,

2021) compare both Gaussian and non-Gaussian distribution for evaluating chance

constraints. Since chance constraints give probabilistic guarantees over large sample

runs, it fails for worst-case scenarios. Hence, a hybrid approach was proposed in

(Brüdigam et al., 2021) that computes two possibilities, a failsafe trajectory and

chance-based stochastic MPC and applies the appropriate controller, giving a safety

guarantee in worst-case scenarios.

Recently, the metric Conditional Value-at-risk (CVaR) has been used in robotics.

The CVaR of a random loss is equal to the conditional expectation of the loss within

the (1 − α) worst-case quantile of the loss distribution (Hakobyan et al., 2019).

Authors in (Hakobyan et al., 2019) propose constraints on the CVaR values, which

can assess the worst-case tail events of a probability distribution. This formulation is,

so far, one of the most appropriate quantification of risk associated with the motion

plan as it also bounds the magnitude of constraint violation. Though (Hakobyan

et al., 2019) considers Gaussian randomness in obstacle motion, the work (Hakobyan

and Yang, 2021) shows that this formulation works for collected sample data from

observation of movement. The CVaR constraint has been adopted for constructing
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barrier functions as a safety filter (Ahmadi et al., 2022). However, these constraints

are mostly derived for the case where the controlled object is a point mass and are

studied in a centralized/single-robot setting.

Table 1.1 summarises the previous works in this domain and highlights the gap in

the literature. It can be seen that methods for distributed and decentralised MPC

do not consider the dimensions of the obstacles, which can be important in some

cases. Also, the works that consider the dimensions and risk-aware motion planning

have not been extended to multi-agent systems.

Table 1.1: Previous Works

References Agents Obstacle
Modelling

MPC type Uncertainty

Luis et al.
(2020)

N Ellipsoids
(linearised)

Decentralised
with information
exchange

Not considered

Park and
Kim (2020)

N Ellipsoids
(linearised)

Decentralised tra-
jectory optimiza-
tion with no infor-
mation exchange

Robust obstacle
space using error
bounds

Zhang et al.
(2020)

1 Polyhedral
spaces

Single-agent MPC Not considered

Zhu et al.
(2021)

N Ellipsoids Decentralised
MPC with no
information ex-
change

Neural Networks
for prediction

Kamel et al.
(2017)

N Sphere Decentralised
MPC with limited
information ex-
change

Inflated uncertainty
over the time hori-
zon

Zhu and
Alonso-
Mora (2019)

N Ellipsoids Centralised Chance constraints
with Gaussian dis-
tribution

Castillo-
Lopez et al.
(2020)

1 Cuboids Single-agent MPC Chance constraints

Arul and
Manocha
(2021)

N Spheres Decentralised
MPC with limited
information ex-
change

Chance constraints
with Gaussian mix-
ture distribution

Hakobyan
et al. (2019)

1 Polyhedral Single-agent MPC CVaR constraints
with Gaussian dis-
tribution
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1.3 Project Goals and Achievements

In this project aim to develop and implement computationally efficient and decen-

tralised algorithms for multi-robot systems. We rely on the model predictive control

(MPC) framework to impose constraints and ensure obstacle and collision avoidance.

The approach is validated on realistic Gazebo simulations, using hexacopter drone

as the robot. Theoretical formulation of the work is generic to accommodate other

types of robots as well. Based on the literature survey, my work aims to address

three key challenges.

1. Obstacle Avoidance: In addition to the other agents, the robot must effec-

tively navigate in the environment with obstacles. Since obstacles are unknown

initially, they are modelled as 3D polyhedrons composed of multiple half-planes.

The work (Zhang et al., 2020) highlights the non-convex constraints to include

obstacle avoidance.

2. Decentralised Computation: For better scalability and non-dependence on a

central authority, each agent must share the computational load, with minimal

communication among each other. This can be using distributed computation

of a combined centralised MPC optimization. A particular method useful

for this purpose is Alternate Direction of Method of Multipliers (ADMM)

(Ferranti et al., 2018; Rey et al., 2018). In this method, each agent carries a

local copy of states of other agents and all the agent communicate to converge

to a consensus for the MPC solution. Alternatively, each agent can solve

its independent problem with the assumption of cooperative behaviour, and

minimal communication. An Optimal Reciprocal Collision Avoidance (ORCA)

(Berg et al., 2011; Cheng et al., 2017) -based planner yields computationally

inexpensive solutions for cooperative and decentralised agents.

3. Handling Uncertainty: An important aspect of the project involves risk-

aware behaviour considering the uncertainty in the motion and perception

of surrounding objects/agents. Based on available data or assumption of

probability distribution, we narrowed down to two major approaches, chance

constraints (Zhu and Alonso-Mora, 2019; Castillo-Lopez et al., 2020; Arul and

Manocha, 2021) and risk consraints (Hakobyan et al., 2019). I plan to use
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Conditional Value-at-risk (CVaR) approach to limit the risk associated with

worst-case probabilities, leading to a safer path. The collected onboard data

will be used to pick distributionally robust samples (Hakobyan and Yang, 2021)

for modelling the constraints.

Currently, objectives 1 & 2 have be achieved to a large extent, and the on-going

work focuses mainly on part 3. In the subsequent chapters, I introduce the system

dynamics and controls, basic constraints, and vanilla model predictive control (MPC).

Then, I discuss the centralised implementation of the multi-agent problem with

polyhedral representation of the objects around the robot. Subsequently, simpler

and faster technique (ORCA) is discussed for decentralised implementation, which

relaxes the shape of agents to a sphere. Numerous simulation tests are conducted to

back the proposed approach and an extensive code has been developed in the process.

The MPC codebase used for centralised formulation can be accessed on Github at

https://bit.ly/3qzRSJC. Similarly, the code for decentralised and parallel MPC

based on ORCA constraints can be accessed on Github at https://bit.ly/3D99TDC.

https://bit.ly/3qzRSJC
https://bit.ly/3D99TDC


Chapter 2

Problem Description

2.1 System State and Dynamics

We begin by describing the system i.e., drone. As seen in figure 2.1, two reference

frames are considered: (i) inertial frame A with axes a1, a2, a3 and (ii) body frame

B with axes b1, b2, b3. The position r in A is represented by
[
x y z

]⊤
. We use

the [Z −X − Y ] Euler angle notation to represent the orientation of the drone. The

orientation angles are roll ϕ (along X-axis), pitch θ (along Y -axis), and yaw ψ (along

Z-axis). The rotation matrix for this convention (used in (Michael et al., 2010)) is

R =

cψcθ − sϕsψsθ −cϕsψ cψsθ + cθsϕsψ
cθsψ + cψsϕsθ cϕcψ sψsθ − cθsϕcψ
−cϕsθ sϕ cϕcθ

 , (2.1)

where c: cos and s: sin is used for shorter representation. The angular velocity

in the body-fixed frame is given by ω = pb1 + qb2 + rb3. The state of the system

is represented by the position and velocity, the Euler Angles (in the [Z −X − Y ]
sequence), and the angular velocities. The control inputs are the thrust and the

moments about the three axes. The state and control input is denoted by

x =
[
x y z ẋ ẏ ż ϕ θ ψ p q r

]T
, (2.2)

u =
[
u1 u2 u3 u4

]T
.

7



Chapter 2. Problem Description 8

Figure 2.1: The inertial and body-fixed reference frames, and forces and moments
by each of the rotors. Image obtained from ‘Aerial Robotics’ on Coursera by Prof.

Vijay Kumar.

The dynamic equations for translational motion of the drone are

mr̈ = m

ẍÿ
z̈

 =

 0
0
−mg

+R

 0
0
u1

 , (2.3)

where the components are denoted in the inertial frame along a1, a2 and a3; m and

g represent mass and gravitational acceleration respectively, and R is the rotation

matrix from B to A as stated in (2.1). The input

u1 = F1 + F2 + F3 + F4,

is the combined thrust obtained, where Fi is the thrust produced by ith propeller.

The equations for the rotation are:

I

ṗq̇
ṙ

 =

u2u3
u4

−
pq
r

× I
pq
r

 , (2.4)

where the components are along the body-fixed principal axes b1, b2 and b3; I is

the inertia matrix and L is the distance between the rotor and the center of mass of
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the drone; the rotational control inputs are

u2 = L(F2 − F4),

u3 = L(F3 − F1),

u4 =M1 −M2 +M3 −M4,

where u2, u3, and u4 are the moments along the body axes and Mi is the moment

produced by ith propeller. The Euler-angular rates (ϕ̇, θ̇, ψ̇) are related to angular

velocities in body-fixed frame (p, q, r) asϕ̇θ̇
ψ̇

 =

 cθ 0 sθ
sθsϕ/cϕ 1 −cθsϕ/cϕ
−sθ/cϕ 0 cθ/cϕ

pq
r

 . (2.5)

The dynamics of the multirotor can be represented in the standard ẋ = f(x,u) as

represented in (Sabatino, 2015) form as follows

ẋ
ẏ
ż
ẍ
ÿ
z̈

ϕ̇

θ̇

ψ̇
ṗ
q̇
ṙ



=



ẋ
ẏ
ż

1
m
(cψsθ + cθsϕsψ)u1

1
m
(sψsθ − cθsϕcψ)u1

1
m
(cϕcθ)u1 − g
p(cθ) + r(sθ)

p(sθsϕ/cϕ) + q − r(cθsϕ/cϕ)
−p(sθ)/cϕ) + q(cθ/cϕ)
1

Ixx
(u2 − (Izz − Iyy)qr)

1
Iyy

(u3 − (Ixx − Izz)pr)
1
Izz

(u4 − (Iyy − Ixx)pq)



, (2.6)

where I has only the diagonal components Ixx, Iyy, Izz as b1, b2, b3 are principal

axes. As seen in equation (2.6), the system has nonlinearities making it harder to

solve. Hence, the model is linearised around the hover position such that thrust is

almost equal to mg and the euler angles are small such that sin(θ) ≈ θ. Hence, the
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second order angular terms can be neglected. The linear dynamic model is

ẋ
ẏ
ż
ẍ
ÿ
z̈

ϕ̇

θ̇

ψ̇
ṗ
q̇
ṙ



=



ẋ
ẏ
ż
θg
−ϕg

1
m
u1 − g
p
q
r
u2

Ixx
u3

Iyy
u4

Izz



, (2.7)

The actual control commands to the quadrotor are the angular velocities of the four

rotors (Ωi). We use the total thrust and moments about body axes as the control

inputs (u) for the MPC problem, as they are versatile and intuitive. It is known that

thrust and moment of individual motors is given by

Fi = kFΩ
2
i ∀i = 1, 2, 3, 4,

Mi = kMΩ2
i ∀i = 1, 2, 3, 4,

where kF , kM are force and moment coefficients respectively, and Ωi is the angular

velocity of the respective rotor (Bouabdallah, 2007). A low-level controller converts

the control thrust and moments control commands to the individual rotors speeds

accordingly.

In case of computational limitations, the dynamics of the system are assumed to be

linear time-invariant (LTI) from equation (2.7). Assuming a total of N symmetrical

agents, dynamics of agent i is of the form

xi(k + 1) = Axi(k) + bui(k) ∀i ∈ 1, 2..., N, (2.8)

where xi(k) ∈ Rnx represents the state vector of agent i at time step k, ui(k) ∈
Rnu is the control input, A ∈ Rnx×nx and b ∈ Rnx×nu are the constant matrices.

Specific limits on states and input as per system constraints x ∈ X and u ∈
U are applied for all agent at all times. These include environment boundaries,
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quadrotor orientation bounds to preserve linear dynamics, actuators limit among

other constraints. Contrarily, full state dynamics 2.6 can be utilized for better results

and greater angular operation range at the cost of slight computational load.

2.2 Baseline MPC formulation

Model Predictive Control (MPC) is a recursive finite-horizon optimal control problem.

Figure 2.2 depicts the solution obtained for finite time horizon with a discrete time

sample. The predicted states using the dynamics model aim to track the reference

trajectory. Due to the use of numerical optimization techniques, various constraints

on states and controls including the dynamics and limits can be applied. I particularly

leverage on this capability to formulate types of constraints to achieve particular

objectives.

Figure 2.2: Visual representation of receding-horizon
control or MPC. Image obtained from Wikipedia

https://commons.wikimedia.org/wiki/File:MPC scheme basic.svg

The goal of each agent is to reach a final position or track a desired trajectory.

Irrespective of this, the stage cost function of proximity to desired state and control

effort for a single agent i for time k + l at time step k is

Ji(k + l|k) = x⊺
e,iQ xe,i + u⊺R u, (2.9)

where xe,i = xref,i − xi(k + l) is the difference between predicted state at time k + l

and reference state depicting the deviation from desired values, and the other term

penalises the control effort and matrices Q and R are positive semidefinite. Thus, for

https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg
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each agent, the overall cost Ji =
∑T

k=1 Ji(k + l|k) is the sum over the time horizon

of T . When the problem is solved in a centralised fashion the total cost of the

optimization problem will in turn be sum of the costs of individual agents.

Finally, the objectives and constraints are formulated as a centralised optimization

problem. The optimal control problem given by

min
x,u

N∑
i=1

T∑
l=1

Ji(k + l|k)

s.t. xi(k + l|k) = Axi(k + l − 1|k) + bui(k + l − 1|k),

x ∈ X , u ∈ U ,

for l ∈ {0, ..., T − 1}, i ∈ {1, ..., N},

plus additional constraints for collision avoidance,

(2.10)

is solved for states x, control inputs u for all agents at each time step, where X and

U denote the limits on states and control input.



Chapter 3

Collision Avoidance for Polyhedral

Objects

Obstacle modelling is important for collision avoidance strategies to avoid computing

overly conservative solutions. Lot of methods focus on spherical/ellipsoidal represen-

tation on obstacles. Though they provide linearised constraints and faster solutions,

many obstacles need to be assumed as inflated ellipsoids resulting in inaccurate mod-

elling and conservative trajectory. On the other hand, many obstacles can be almost

exactly modelled as geometric shapes, that can be approximated as polyhedrons.

This chapter discusses the non-linear constraints for such obstacle representation.

We begin by discussing the theoretical outline of the approach, followed by simu-

lation validation. Then, we move on to the centralised multi-agent case, that uses

the constraints for other agents as obstacles. The chapter concludes by presenting

simulation results for different scenarios consisting of multiple agents.

3.1 Obstacle Representation

Each obstacle occupies some space which is forbidden for the controlled object. This

is embedded as constraint in the optimization problem. The obstacles are modelled

as convex polyhedral sets composed as union of multiple half-spaces. The space

13
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occupied by mth obstacle O(m) is represented as

O(m) = {p ∈ R3 : G(m)p ≤ h(m)}, m ∈ {1, ...,M}, (3.1)

whereM denotes the total number of obstacles, G ∈ Rnm×3 and h ∈ Rnm are constant

matrices, and nm is the number of half spaces required to model the obstacle. We

assume that any non-convex obstacle can be conservatively approximated to an

enclosed polyhedral. If zi(k) is the position of the agent i at time step k, then desired

condition for avoiding the obstacles is

dist(zi(k),O(m)) > 0 ∀i ∈ {1, 2, ..., N}, ∀m ∈ {1, 2, ...,M}, (3.2)

where the dist() function is the distance between the current position of the agent

and obstacle space. It is mathematically defined as

dist(zi(k),O(m)) := min
r∈O(m)

||zi(k)− r|| or,

dist(zi(k),O(m)) = min
d
(||d|| : G(m)(zi(k) + d) ≤ h(m)).

(3.3)

Currently, we consider the controlled robot to be point-sized. In future, this will

be extended to consider the dimensions. It is evident that the constraint (3.2) is

non-trivial to impose on the optimization problem. This will be reformulated to a

different form, as discussed further in Section 3.2.

Apart from obstacles, we need to ensure collision-free trajectories between multiple

agents. Since we had considered the robots as point sized, a simple approach is to put

constraints between inter-agent distance to be greater than a user-defined value. But

for our case, this formulation has few important disadvantages. Quadrotors cause a

significant downwash i.e., strong airflow beneath the plane of quadrotor. Hence, it is

important to avoid this vertical column-like region. Using a larger value for minimum

distance between agent will cause overly conservative planning, as quadrotors can fly

closely when besides each other.

Each agent considers itself as a point sized object and other agents as polygonal

prism modelling the turbulent region below and above the other agent. As the agents

are considered dynamic obstacles, the polyhedral representation of each obstacles

is also the function of time. Let Nj be the forbidden space around the agent j, the
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desired constraint is

dist(zi(k + l|k),Nj) > 0, ∀l ∈ {1, 2, ..., T},∀i, j ∈ {1, 2, ..., N}, i ̸= j. (3.4)

The space Nj is a dynamic quantity, and hence is defined by time dependent matrices

G(j)(k+ l|k) and h(j)(k+ l|k) in the form as defined in equation (3.1). These matrices

can be computed from the predicted states of the other agents.

3.2 Constraints Reformulation

The constraint like (3.2) and (3.4) cannot be directly imposed, as the “dist()”

function (in (3.3)) itself involves a minimisation problem. The work (Zhang et al.,

2020) proposes an equivalent form for these constraints that can be framed for

optimization solver. We have

dist(z,O) ≥ 0⇐⇒ ∃λ ≥ 0 : (G z − h)⊺λ ≥ 0, ||G⊺λ||2 ≤ 1, (3.5)

obtained by finding the dual of the minimization problem.

Proof. From the definition (3.3) dist(zi(k),O) = mind(||d|| : G(zi(k) + d) ≤ h) is a

minimization problem. The dual of this problem is maxλ(Gzi(k)− h)⊺λ : ||G⊺λ||2 ≤
1, λ ≥ 0. Since O is assumed to have nonempty relative interior, strong duality holds

(Zhang et al., 2020) as follows, dist(zi(k),O) = maxλ(Gzi(k) − h)⊺λ : ||G⊺λ||2 ≤
1, λ ≥ 0. Hence, we can reformulate the constraint on distance to the form specified

in (3.5).

Thus, if any λ satisfying the properties can be found out, it is proven that the collision

constraint is satisfied. Moreover, these conditions can encoded as constraints with λ

as control variable.
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Figure 3.1: Closeup view of the
drone

Figure 3.2: Gazebo snapshot dur-
ing mission

3.3 Basic Demo

The above formulation was initially tested on a single agent and obtacle. Figures

3.1 and 3.2 show the visual representation of the robot and obstacle during the

simulation. Starting from the origin the drone has the target setpoint as (10, 10, 10)

in 3D space. We simulate the mission without any obstacles and with a cube of size

4m as an obstacle, centered at point (5, 5, 5). As we can see in the Fig. (3.3), the

proposed obstacle avoidance scheme successfully avoids the obstacle that comes in

the original path. It can be observed in figure 3.3 how the drone maintains constant

altitude below the obstacle due to flat face of the cube. In further sections, we use

the similar constraints for multiple agents posing as obstacles.

3.4 Centralised Approach for Multi-agent Case

Multi-agent model predictive control strategies can be implemented in a centralized

or decentralized manner. This depends on where the computation occurs i.e., on a

single node or multiple nodes. The optimal control problem with the reformulated
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Figure 3.3: 3D plot for the mission

constraints for N agents at time step k is given by

min
x,u,λ

N∑
i=1

T∑
l=1

Ji(k + l|k)

s.t. xi(k + l|k) = Axi(k + l − 1|k) + bui(k + l − 1|k),

x ∈ X , u ∈ U ,

(G(a) zi − h(a))λ(a) ≥ 0,

||G(a)λ(a)||2 ≤ 1, λ(a) ≥ 0

for l ∈ {0, ..., T − 1}, i ∈ {1, ..., N},

(3.6)

is solved for states x, control inputs u and dual variable λ for all agents. a is the

member of the set of predicted polygon space for other agents or obstacles. The

optimization problem (3.6) is repeatedly solved for a finite time horizon to obtain a

optimal set of control inputs u∗(k). Only the first component u∗(k|k) is used as the

control input. After one time step, states x(k + 1) are obtained and used for solving

the optimization problem again. This is a nonlinear optimization problem, that can
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be solved using the popular Interior Point OPTimizer (IPOPT) algorithm (Wächter

and Biegler, 2006).

The problem described in (3.6) includes the sum of individual cost of each agent. The

control commands of all the agents are computed simultaneously and communicated

to each of the agent. This does not require the communication between different

agents as all of them report the estimated state to this central node.

Algorithm 1 Centralised MPC algorithm for a multiple agents

Input: Initial Positions x(k|k) and control sequence u∗(k − 1) for all agents
Output: Control command u∗

i (k) for all agents

1: xref,i ← getReference(k) ▷ reference over time horizon T after k
2: for j ∈ {1, ..., N} and l ∈ {1, ..., T} do
3: x̂j(k+ l|k)← getStatePredictions(u∗

j(k+ l− 1|k− 1)) ▷ Over time horizon T
4: end for
5: X̂(k)← {x̂1(k), ..., x̂N(k)} ▷ for all N agents over the time horizon T

6: (G
(a)
i , h

(a)
i )← getObstacleSpace(O, X̂(k))

7: OCP← buildMPC(xref,i, xi(k|k), G(a)
i , h

(a)
i , Ai)

8: u∗
i (k)← solveMPC(OCP)

9: u(k)← u∗
i (k|k) ▷ use only the first component for all agents

10: broadcast(u∗
i (k))

Algorithm 1 describes the steps for one iteration of MPC. It needs the current

observed state and previous optimal control values for all agents. Then the predicted

state of all the agents is computed based on dynamics model and previous optimal

control commands. The matrices (G(a) and h(a)) representing the obstacle space of

other agents and obstacles can then be calculated. These matrices for the other

agents are time-varying over the time horizon, unlike the stationary obstacles. The

cost function is the sum of individual objective cost function obtained using state

reference xref,i for agent i. We can then formulate the optimization problem (3.6) by

imposing appropriate constraints. Only the first component of the obtained u∗ is

utilised and the algorithm is re-iterated for next time step.

3.5 Simulation Results

We use the AsTec Firefly hexacopter as the controlled object for simulation. High-

fidelity simulations are performed using RotorS simulator (Furrer et al., 2016) in



Chapter 3. Collision Avoidance for Polyhedral Objects 19

Gazebo. The controller communicates with the Gazebo using Robot Operating

System (ROS). The MPC problem is solved using a nonlinear programming solver

IPOPT (Wächter and Biegler, 2006). We use the “do-mpc” interface (Lucia et al.,

2017) for the solver, that also uses CasADi package (Andersson et al., 2019). All

the simulations are perfromed using HP Pavilion Gaming Laptop with AMD Ryzen

5800H CPU, 16GB RAM, Nvidia RTX3050 GPU.

Being a hexacopter, each agent is modelled as hexagonal prism using eight half-planes

enclosing the robot. We now demonstrate the multi-agent missions involving position

exchange in different formations with six drones. Figures 3.5 and 3.4 show the

trajectories of each of the drone, and Figure 3.6 shows a snapshot of the gazebo

simulation for the case with hexagonal formation. It can be seen how each agent

successfully avoids the others to reach the final positions. Video links for the same

have been provided in the description.

Figure 3.4: Top view with hexagonal formation. The video can be accessed at
bit.ly/3q3Ymzg

All the simulations and optimizations stated above are computationally expensive,

more due to the nonlinear and nonconvex constraints. The multi-agent simulation

on Gazebo can run at a real time factor of 0.2. Over the 200 time-steps of the

MPC problem, the computation time was found to be 0.29s on an average with a

standard deviation of 0.04s. Figure 3.7 shows the CPU utilization of the machine. It

can be observed that percentage utilization of each CPU core oscillates. A single

https://bit.ly/3q3Ymzg
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Figure 3.5: Top view mission with rectangular formation. The video can be
accessed at bit.ly/3dVptHd

Figure 3.6: Gazebo snapshot during the mission

optimization problem is repeatedly solved on different computer threads, but lacks

efficient parallelization.

Figure 3.7: CPU usage during the centralised MPC optimizations.

https://bit.ly/3dVptHd


Chapter 4

Decentralised MPC

We now focus on decentralised approach for solving the MPC on independent parallel

nodes. Realistically, each agent agent has some decent computational power, hence

it must be utilised as much as possible. This efficient parallel computation results in

faster solving times and good scalibility. One approach, namely Alternate Direction

of Method of Multipliers (ADMM) (Ferranti et al., 2018; Rey et al., 2018) works by

efficiently fragmenting the single MPC problem (like the one discussed in previous

chapter), that can be solved on multiple nodes. At each time step, multiple rounds

of optimization and communication are required to obtain a consensus on true states

and predictions of all the agents. Though it can handle all types of constraints, the

computational load is usually very high for a time-critical system like ours. Hence, I

shifted to Optimal Reciprocal Collision Avoidance (ORCA) method for decentralized

implementation. The only limitation of this method is the assumption of the circular

shape of the agents. In this chapter we discuss the mathematical framwork for ORCA,

parallel computation architecture on the PC, and simulation results for the same.

4.1 ORCA Algorithm

This is a distributed collision avoidance algorithm that enables each agent to compute

optimal velocities with guaranteed collision avoidance for finite time horizon. This

algorithm applies constraint on relative velocities for each pair of agents to avert

21
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collisions with each other. We define a velocity obstacle, for agent B as obstacle,

with respect to agent A as

V Oτ
A|B = {v|∀t ∈ [0, τ ] :: ||vt− (pB − pA)|| < (rA + rB)},

where pB, pA are positions of agent A and B, and rA, rB being their respective

radius (assuming circular shape of agents). The velocity obstacle is basically a set of

forbidden relative velocities of agent A with respect to B to avoid collision with B in

time horizon τ . With vA, vB being the current velocities, let u be the perpendicular

vector from relative velocity (vA − vB) to the velocity obstacle, as shown in Fig.

4.1. The illustration shows the geometric interpretation of the velocity obstacle.

Mathematically, we define

u = (arg minv∈V Oτ
A|B
||v − (vA − vB)||)− (vA − vB).

This represents the minimum distance from the relative velocity vector to the

boundary of the velocity obstacle. The vector u is analytically computed during

the runtime for any set of position and velocity values using the known geometric

properties of the V Oτ
A|B, circles and tangents.

Figure 4.1: Left: Positions and velocities of agents in global perspective. Right:
Geometric representation of velocity obstacle V Oτ

A|B and ORCAτ
A|B constraint

from reference frame of agent A, when vA − vB is inside V Oτ
A|B. Image from

(Cheng et al., 2017).
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Figure 4.2: ORCAτ
A|B constraint when vA − vB is outside V Oτ

A|B. Image from

(Cheng et al., 2017).

If (vA − vB) belongs to the velocity obstacle V Oτ
A|B, the ORCA region for velocity

of agent A (Berg et al., 2011) is (Fig. 4.1)

ORCAτ
A|B(vA,u) = {v|(v − (vA +

1

2
u))n ≥ 0},

where n is the normal vector of u. The term 1
2
u denotes that agent A takes half

the correction is the velocity and assumes that the other half be corrected by agent

B similarly. This is applied as a constraint on the velocity of the agent A. When

(vA − vB) is already outside V Oτ
A|B, the current trajectory is guaranteed to be

collision-free for atleast time horixon τ . In this case, the constraint on the velocity

becomes (Cheng et al., 2017) (Fig. 4.1)

ORCAτ
A|B(vA,u) = {v|(v − (vA +

1

2
u))n ≤ 0}.

Note that these constraints as linear constraints, hence computationally very fast.

These constraints are applied for all time steps, and hence requires the relative

velocities and positions at all time steps of MPC horizon. The expected states of

agent A (on which the problem is solved) can be approximated using the previous

solution. Whereas for the other agent B, we make a constant velocity assumption

to calculate a tentative relative positions and velocities. Also, if a communication
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channel may be established to use the previously calculated solution on agent B for

better accuracy.

4.2 Decentralized MPC Problem

Based on the previous MPC formulation, we discuss the decentralized version of

MPC using ORCA constraints for inter-agent cooperation. For an agent A at time

step k, the optimal control problem is

min
x,u

T∑
l=1

J
k+l|k
A (x,u,xref)

s.t. xA(k + l|k) = AxA(k + l − 1|k) + buA(k + l − 1|k),

x ∈ X , u ∈ U ,

vel(xA) ∈ ORCAτ−l
A|B(x

k+l|k
A ,x

k+l|k
B ) ∀l ∈ [1, T ],

and B ∈ [1, N ] ̸= A,

(4.1)

where J
k+l|k
A (x,u,xref) represents the quadratic cost function comprising of distance

from target setpoint and control inputs, A and b are matrices representing the

linearised dynamics, X and U being the limits, and vel(xA) function denoting

the velocity component of state xA. This problem is solved simultaneously and

independently on each of the agents. This is further described in algorithm 2. This

algorithm must parallely run on all the agents. The initial state xA(k|k), the previous
solution u∗

A(k− 1), and the position and velocity of the other agent is required as an

input for any time step. Firstly, from the previous solution and constant velocity

assumption, we calculate the prediction for the relative velocities as shown in steps 3

and 4. We then use the geometric properties to calculate the vector u defined earlier

(Step 5). Based on this, a linear ORCA constraint on the velocity is calculated for

each pair of agents at all time steps in step 6. Subsequent steps follow the general

procedure for building and solving the MPC to apply the solution at the first time

step.
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Algorithm 2 Decentralised MPC algorithm (for agent A) with ORCA constraints

Input: Initial state xA(k|k) and control sequence u∗
A(k − 1) and position pB and

velocity vB for all other agents
Output: Control command u∗

A(k) for agent A

1: xref,A ← getReference(k) ▷ reference over time horizon T after k
2: for B ∈ {1, ..., N} ≠ A and l ∈ {1, ..., T} do
3: p̂B(k + l|k) = pB + lvB∆t ▷ constant velocity for B over time horizon T

4: (p̂
k+l|k
A , v̂

k+l|k
A )← getPredictions(x∗

A(k − 1), l)

5: uτ−l
A|B ← getU(p̂

k+l|k
A , p̂

k+l|k
B , v̂

k+l|k
A ,vB) ▷ calculate u vector geometrically

6: ORCAτ−l
A|B ← getORCA(v̂

k+l|k
A , uτ−l

A|B)
7: end for
8: OCP← buildMPC(xref,A, xA(k|k), ORCAA|B) ▷ here ORCAA|B denotes set of

all linear constraints
9: u∗

i (k)← solveMPC(OCP)
10: u(k)← u∗

i (k|k) ▷ use only the first component for all agents

Figure 4.3: CPU usage during the parallel computation of multiple MPC opti-
mizations.

4.3 Software Architecture

Simulation of such scenarios require independent computation of MPC interacting

with a common Gazebo simulation. For this purpose, I developed a codebase for

parallel processing for multiple agents. This involves a single Python script initialising

multiple processes and ROS nodes (acting as independent agents), that invoke the

algorithm 2. All these processes communicate their states and control input to other

agents and Gazebo over ROS Master. We use the Multiprocessing module in

Python that initiates new processes for each agent. Fig. 4.3 depicts the change in

CPU usage as the MPC starts. We can observe that all the cores are being used
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considerably. The initial part shows the CPU usage for the Gazebo Simulation and

ROS. This can be compared with Fig. 3.7 from the previous chapter to understand

the utilization of the parallel processing. The code is written in a generic nature to

facilitate quick implementation of any other decentralised MPC algorithm.

4.4 Simulation Results

We conduct multiple cases to test our approach involving point-to-point transition

missions. In the first case, we consider the case of robots approaching each other

in head on direction. Fig. 4.4 shows the trajectories for all the agents. It can be

observed in the video (link in the caption) how the agents in the middle area pause

for some time to let the other agents pass due to insufficient space. Next, we consider

Figure 4.4: Trajectories of six agents linearly approaching each other. The video
can be accessed at https://bit.ly/3NkCw5s

a symmetric hexagonal formation similar to the one discussed in previous chapter.

The video (and trajectory plots in Fig. 4.5) shows how the agents keep a safe distance

from each other and moving in a round-about like motion. Similarly, Fig. 4.6 shows

another case with diagonal position switching in a rectangular formation. In the

next case (Fig. 4.7), we consider two teams of three agents exchange positions in

a triangular orientation. A snapshot of Gazebo simulation (Fig. 4.8) shows the

positions when the agents closely pass each other.

https://bit.ly/3NkCw5s
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Figure 4.5: Trajectories of six agents in symmetrical hexagonal formation. The
video can be accessed at https://bit.ly/3D7YKmI

Figure 4.6: Trajectories for the mission with rectangular formation. The video
can be accessed at https://bit.ly/3iwOjjb

Video links for all the cases are provided in the captions of the figures. This method

is significantly faster in compared with the previously discussed method with mean

computation time of 0.06s with a standard deviation of 0.018s for a data set of over

200 iterations. The entire simulation run with a real time factor of 0.5 in the Gazebo.

It was observed in some cases that collisions (or slight brushing of the circles) occurred

due to difference dynamic model of the realistic simulation and low-level controller

tracking error. A higher value of time horizon for the ORCA constraint τ mitigates

https://bit.ly/3D7YKmI
https://bit.ly/3iwOjjb


Chapter 4. Decentralised MPC 28

Figure 4.7: Trajectories for the mission with two teams in triangular configuration.
The video can be accessed at https://bit.ly/3NllSTd

Figure 4.8: Snapshot of the Gazebo simulation.

this problem. Meanwhile, we can consider the minute overlap of the circles like a slack

variable, and high quadratic cost for the overlap distance. These slight modifications

significantly increase the collision avoidance performance of the proposed controller.

https://bit.ly/3NllSTd


Chapter 5

Conclusion and Future Work

5.1 Conclusion

This report comprehensively discusses the Model Predictive Control for navigation in

multi-agent system in environment with obstacles. We begin by surveying the existing

work to identify the problem statement of the project and bridge the research gap.

We objectively discuss three pillars of focus in the project namely, obstacle avoidance,

decentralised computation, uncertainly handling. Meanwhile, the first two goals have

been achieved, further work would mostly focus on the aspect of adding constraints

considering uncertainty in state perception and motion of surrounding obstacles. We

describe the states, control representation and derived dynamics of a multi-rotor

drone. Further we consider two approaches, first of them being the polyhedral-shaped

assumption of the obstacles. The constraints are then reformulated using the dual

problem in a form that can be directly used in vanilla MPC code. Contrary to the

centralised MPC, in the next chapter, we introduced ORCA-based method for faster

and distributed implementation. The ORCA algorithm is described for a pair of

agents and is extended to multiple agents solving parallely. For both the methods,

we illustrate multiple test cases and videos of the simulations. We also compare the

computational aspects associated with both the methods. In conclusion, the ORCA

method works significantly better for simple multi-agent cases, with a trade-off with

the assumption of circular shape of the agent. While this might not be a problem for

29
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robots like drones, it may be inaccurate or overly conservative for modelling generic

obstacles.

In future I plan to focus of three aspects –

1. Planning with Uncertainty: Current formulation assumes perfect values

of the states of the agents, which is not observed in real world. Moreover,

other dynamic obstacles might have uncertainty in the motion. I will be using

Distributionally Robust approach (Hakobyan and Yang, 2021) for filtering out

the onboard observed data for other agents and obstacles. This can then be

used for adding CVaR and Chance constraints to the current parallel simulation

architecture.

2. Multi-element Realistic Simulations: Current tests mostly involve position

exchange mission, we plan to test more extensively on realistic mission. Though

we have validated collision avoidance with polyhedral elements, next tests

would involve both the ORCA for other agents and dynamic obstacles.

3. Embedded Implementation: I am actively working on using the Raspberry

Pi to compute a single agent decentralised MPC problem. Current simulation

framework is modular to accommodate other independent computation nodes

(RPi) with the already running multi-agent MPC.
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