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Safe navigation is a fundamental challenge in multi-robot systems due to the uncer-

tainty surrounding the future trajectory of the robots that act as obstacles for each

other. In this work, a principled data-driven approach is proposed where each robot

repeatedly solves a finite horizon optimization problem subject to collision avoidance

constraints with latter being formulated as distributionally robust conditional value-

at-risk (CVaR) of the distance between the agent and a polyhedral obstacle geometry.

Specifically, the CVaR constraints are required to hold for all distributions that are

close to the empirical distribution constructed from observed samples of prediction

error collected during execution. The generality of the approach allows us to robustify

against prediction errors that arise under commonly imposed assumptions in both

distributed and decentralized settings. Tractable finite-dimensional approximations of

this class of constraints are derived by leveraging convex and minmax duality results

for Wasserstein distributionally robust optimization problems. The effectiveness of

the proposed approach is illustrated in a multi-drone navigation setting implemented

in Gazebo platform.
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Chapter 1

Introduction

1.1 Overview

Multi-robot systems, including drones, ground robots, and autonomous vehicles, have

seen tremendous development due to applications ranging from military, search and

rescue missions, advanced mobility, cave explorations, indoor motion, warehouses and

entertainment purposes. Motion planning of multiple robots in such a diverse set of

environments remains an essential challenge. Each individual agent must safely avoid

obstacles and other members of the group. The real world is, however, not completely

deterministic in terms of both dynamics and state measurements. The primary goal

of this work is to develop and implement computationally efficient distributed model

predictive control (MPC) algorithms for risk-sensitive safe navigation of multiple

robots under uncertainty.

MPC has been widely used for motion planning in robotic systems and drones and

provides flexibility to modify the problem formulations for different settings. It is

powerful tool that solves a finite horizon numerical optimization problem repeatedly

to compute the control commands. The primary advantage of using MPC is its

ability to accommodate various performance metrics and state/input constraints.

Real world systems have an element of uncertainty and noise, and also surrounded by

non-cooperative robots or obstacles. To handle the uncertain motion of obstacles and

other agents, various types of constraints can be employed. Particularly, I capture

1



Chapter 1. Introduction 2

the risk of collision in terms of conditional value-at-risk (CVaR) of the distance

between the robot and obstacle (or other agent) over the entire prediction horizon.

Specifically, the proposed methods uses real-time onboard observed data to construct

a family of probability distributions close to the observed samples and formulates a

distributionally robust risk constrained optimal control problem which can be solved

in a computationally feasible manner.

For the implementation, hexacopter drone as a robot is considered, with realistic

physics simulations using Gazebo. Nevertheless, the theoretical formulation is quite

general and can be used on other systems like unmanned ground vehicles, self-driving

cars and manipulators. I now summarize the three key goals for this work.

1. Collision Avoidance: Avoiding collision with surrounding cooperative or

non-cooperative agents/obstacles is key for safe navigation. I represent the

surrounding in term of 3D polyhedrons, for accurate representation, instead

of circular or spherical assumption prevalent in prior work and formulate

distributionally robust collision avoidance constraints from past data collected

onboard which are then included in the MPC formulation.

2. Distributed Computation: A single centralized problem has a large size and

is computationally infeasible for real-time deployment. Therefore, I present a

distributed approach that effectively exploits the parallel computation and inter-

agent communication while ensuring robustness to prediction and measurement

error.

3. Handling Uncertainty: Finally, risk-sensitive behaviour of the agent depends

on how the uncertainty in handled by the MPC. Based on MPC predictions

of other agents and collected state data, I developed techniques to formulate

the data-driven risk constraints for collision avoidance under uncertainty in a

principled manner by building upon past works Hota et al. (2019); Hakobyan

et al. (2019); Hakobyan and Yang (2021).

Further in this chapter, I highlight the gaps in the existing literature in and show

how my work addresses the gap. Chapter 2 describes the system dynamics, and

basics of model predictive controllers for drones. The representation of the obstacles

as polyhedrons and reformulation of the constraints is elaborated in section 3.1.
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Table 1.1: Classification of previous works

Computation Deterministic Robust Chance con-
straints

CVaR

Single-agent Zhang et al.
(2020)

Soloperto
et al.
(2019)

Castillo-
Lopez et al.
(2020); Zhu
and Alonso-
Mora (2019)
Batkovic
et al. (2020);
de Groot
et al. (2021)

Gao et al.
(2021);
Hakobyan
and Yang
(2021);
Dixit et al.
(2022)

Decentralised Arul and
Manocha
(2020); Berg
et al. (2011);
Cheng et al.
(2017)

Park
and
Kim
(2020);
Kamel
et al.
(2017)

Gopalakrishnan
et al. (2017);
Arul and
Manocha
(2021); Zhang
et al. (2021)

Our work

Distributed Firoozi et al.
(2020); Luis
et al. (2020)

Dai et al.
(2022)

Katriniok
et al. (2018)

Our work

The main theoretical results on handling the uncertainty and distributionally robust

constraint formulation is described in section 3.2. In chapter 4, I demonstrate the

performance of the proposed approach on a numerical simulator and analyse the

effect of changing various parameters. It further shows the simulation results on a

more realistic Gazebo simulator with a larger number of agents. Finally, I conclude

this work in chapter 5.

1.2 Literature Survey

Motion planning techniques for robotic teams have been studied in the past, nev-

ertheless some important challenges remain in collision avoidance for multi-robot

systems, as reviewed in Huang et al. (2019). Authors in Luis et al. (2020) develop

a distributed MPC scheme for multiple robots to generate trajectories in real-time.

Though the approach has been shown to give excellent experimental results, other

agents’ current state (and planned states) have been assumed to be known to all
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agents for avoiding collisions. This information might not be practically possible

to communicate amongst each other, making it challenging to implement in a de-

centralised manner. Moreover, uncertainties in the actual motion of robots or other

dynamic obstacles have not been considered.

Reference Park and Kim (2020) develops a decentralised planner and constructs safe

corridors using linear constraints. The authors estimate the reachable area by limiting

the velocity or acceleration of other bodies, resulting in robust but conservative

constraints. Other optimization-based methods such as Zhang et al. (2020) assume

static, deterministic, but complex environments to find the least intrusive trajecto-

ries by solving MPC with signed-distance constraints formulation. One significant

advantage of this method is that all dimensions of robots are accounted for, which

is essential for large-sized robotic agents, but has been currently implemented for a

single robot in a 2D world. Other works such as Zhu et al. (2021); Cong et al. (2021)

use neural networks to predict the motion of neighbouring robots. Both these works

use MPC to impose constraints using predicted states and work with decentralised

computation. Robust MPC approaches as studied in Kamel et al. (2017) ensure

guaranteed safety but lead to a computationally expensive and overly conservative

solution.

An alternative to model the uncertainty is using stochastic optimization. Given a

probability distribution of possible transitions, probabilistic or chance constraints

can be applied to the MPC problem to limit the collision probability Zhu and

Alonso-Mora (2019). Building on this, the authors in Castillo-Lopez et al. (2020)

propose tighter constraints for a single-agent with uncertain dynamic obstacles using

chance constraints. Another work Arul and Manocha (2021) discusses decentralised

implementation of MPC with probabilistic OCRA Berg et al. (2011), which basically

computes a set of collision-free velocities. Authors in Arul and Manocha (2021) com-

pare both Gaussian and non-Gaussian distribution for evaluating chance constraints.

Since chance constraints give probabilistic guarantees over large sample runs, it fails

for worst-case scenarios. Hence, a hybrid approach was proposed in Brüdigam et al.

(2021) that computes two trajectories: a fail-safe trajectory and chance constrained

stochastic MPC and applies the appropriate controller, giving a safety guarantee in

worst-case scenarios.
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Recently, the risk measure Conditional Value-at-risk (CVaR) has been used in robotics.

The CVaR of a random loss is equal to the conditional expectation of the loss within

the (1−α) worst-case quantile of the loss distribution Hakobyan et al. (2019). Authors

in Hakobyan et al. (2019) propose constraints on the CVaR values, which can assess

the worst-case tail events of a probability distribution. This formulation is, so far,

one of the most appropriate quantification of risk associated with the motion plan as

it also bounds the magnitude of constraint violation. Though Hakobyan et al. (2019)

considers Gaussian randomness in obstacle motion, the work Hakobyan and Yang

(2021) shows that this formulation works for collected sample data from observation

of movement. However, these constraints are mostly derived for the case where

the controlled object is a point mass and are studied in a centralized/single-robot

setting. In addition, the constraints formulated in Hakobyan and Yang (2021) does

not distinguish between solutions when collision does not take place, leading to

somewhat risky maneuvers in the computed trajectories. In this work, I formulate

the CVaR constraint on the uncertain distance between the ego robot and other

moving robots leading to safe trajectories and distributed computation.

Table 1.1 summarises the previous works in this domain and highlights the gap in the

literature. It can be observed that no previous work utilises risk-based constraints for

decentralised/distributed multi-agent systems. Furthermore, only few works Zhang

et al. (2020); Hakobyan and Yang (2021); Gao et al. (2021); Soloperto et al. (2019);

Firoozi et al. (2020) consider the polyhedral shapes for obstacles. Authors in Gao

et al. (2021); Soloperto et al. (2019) focus primarily on autonomous driving scenarios.

Our work aims to bridge this gap by developing risk-sensitive MPC for multi-agent

systems with polyhedral obstacle representation.

1.3 Contributions

I have considered a multi-robot system where each robot solves a MPC problem

subject to constraints on collision avoidance. At each time, an agent collects samples

of the prediction error between the current position of other robots and the position

of the other robots predicted in the past in the decentralized setting or shared by

the other robots in the past in the distributed setting. The collision avoidance
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constraints are then formulated as distributionally robust CVaR constraints on the

distance between the controlled object and a polyhedral obstacle parameterized by

the predicted position and the uncertain prediction error. In other words, we require

the CVaR of the distance to be bounded for a family of distributions of the uncertain

prediction error close (in the sense of Wasserstein metric) to the past samples of

prediction errors. While this class of constraints are infinite-dimensional, I derive a

tractable finite-dimensional approximations by leveraging convex and minmax duality

results for distributionally robust optimization problems. Finally I demonstrate the

efficacy of the proposed approach in a multi-drone navigation setting implemented in

Gazebo platform with multi-agent MPC being executed in parallel processors with

realistic inter-agent communication protocols in place.



Chapter 2

Problem Description

2.1 System Dynamics

While the proposed formulation is general enough for multiple types of multi-robot

systems, in order to keep the discussion grounded, I specifically consider drones to

evaluate the effectiveness of the proposed approach in this project. As seen in Figure

2.1, two reference frames are considered: (i) inertial frame A with axes a1, a2, a3

and (ii) body frame B with axes b1, b2, b3. The position r in A is represented by[
x y z

]⊤
. The [Z−X−Y ] Euler angle notation is used to represent the orientation

of the drone. The orientation angles are roll ϕ (along X-axis), pitch θ (along Y -axis),

and yaw ψ (along Z-axis). The angular velocity in the body-fixed frame is given by

ω = pb1 + qb2 + rb3. The state of the system is represented by the position and

velocity, the Euler Angles (in the [Z −X − Y ] sequence), and the angular velocities.

The control inputs are the thrust and the moments about the three axes.

The state and control inputs are denoted by

x =
[
x y z ẋ ẏ ż ϕ θ ψ p q r

]⊤
,

u =
[
u1 u2 u3 u4

]⊤
.

7



Chapter 2. Problem Description 8

Figure 2.1: The inertial and body-fixed reference frames, and forces and moments
by each of the rotors. Image obtained from ‘Aerial Robotics’ on Coursera by Prof.

Vijay Kumar.

The dynamic equations for translational motion of the drone are

mr̈ = m

ẍÿ
z̈

 =

 0
0

−mg

+R

 0
0
u1

 , (2.1)

where the components are denoted in the inertial frame along a1, a2 and a3; m and

g represent mass and gravitational acceleration respectively, and R is the rotation

matrix from B to A. The input

u1 = F1 + F2 + F3 + F4,

is the combined thrust obtained, where Fi is the thrust produced by ith propeller.

The equations for the rotation are:

I

ṗq̇
ṙ

 =

u2u3
u4

−

pq
r

× I

pq
r

 , (2.2)

where the components are along the body-fixed principal axes b1, b2 and b3; I is

the inertia matrix and L is the distance between the rotor and the center of mass of
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the drone; the rotational control inputs are

u2 = L(F2 − F4),

u3 = L(F3 − F1),

u4 =M1 −M2 +M3 −M4,

where u2, u3, and u4 are the moments along the body axes and Mi is the moment

produced by ith propeller.

The dynamics of the multirotor can be represented in the standard ẋ = f(x,u) as

represented in Sabatino (2015) form as follows

ẋ
ẏ
ż
ẍ
ÿ
z̈

ϕ̇

θ̇

ψ̇
ṗ
q̇
ṙ



=



ẋ
ẏ
ż

1
m
(cψsθ + cθsϕsψ)u1

1
m
(sψsθ − cθsϕcψ)u1

1
m
(cϕcθ)u1 − g
p(cθ) + r(sθ)

p(sθsϕ/cϕ) + q − r(cθsϕ/cϕ)
−p(sθ/cϕ) + r(cθ/cϕ)
1

Ixx
(u2 − (Izz − Iyy)qr)

1
Iyy

(u3 − (Ixx − Izz)pr)
1
Izz

(u4 − (Iyy − Ixx)pq)



, (2.3)

where I has only the diagonal components Ixx, Iyy, Izz as b1 along b2, b3 principal

axes, and I denote cϕ := cos(ϕ) and sϕ := sin(ϕ) and so on, for better readability.

Specific limits on states and inputs are applied for all agent at all times as deterministic

constraints x ∈ X and u ∈ U . These include environment boundaries, quadrotor

orientation bounds, actuators limit, among others. Full state dynamics (2.3) are

utilized for better results and greater angular operation range at the cost of higher

computational load.
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2.2 Baseline MPC formulation

Model Predictive Control (MPC) is a recursive finite-horizon optimal control problem.

Figure 2.2 depicts the working principle of MPC where at each discrete time step k,

a constrained optimization problem is solved to compute an optimal control sequence

and the resulting state trajectory that minimizes deviation from reference trajectory

while satisfying constraints. Only the first of the computed control sequence is

applied to the plant, and the system transition to the next state and the process is

repeated.

Figure 2.2: Visual representation of receding-horizon control or MPC. Image
obtained from Wikipedia.

Here, a multi-agent system comprising of N individual mobile robots or agents is

considered. The goal of each agent is to reach a (agent-specific) final position or

track a desired trajectory. For both objectives, the cost function for an agent i at

time k + l computed at time k is given by

Ji(k + l|k) = xe,i(k + l|k)⊺Q xe,i(k + l|k)

+ ui(k + l|k)⊺Rui(k + l|k), (2.4)

where xe,i(k + l|k) = xref,i(k + l)− xi(k + l|k) is the difference between the desired

state at time k + l and the state at time k + l predicted at k. The second term

penalises the control effort with ui(k + l|k) being the control input for time k + l



Chapter 2. Problem Description 11

computed at time k, and the matrices Q and R are assumed to be positive definite.

The finite horizon optimal control problem for agent i is given by

min
xi,ui

T∑
l=1

Ji(k + l|k)

s.t. xi(k + l|k) = fi(xi(k + l − 1|k), ui(k + l − 1|k)),

xi(k + l|k) ∈ Xi, ui(k + l − 1|k) ∈ Ui,

C(zi(k + l|k), zj(k + l|k)) ≤ 0, ∀i ̸= j,

for all l ∈ [T ], j ∈ [N ],

(2.5)

where fi captures the discrete-time dynamics, Xi and Ui denote the deterministic

constraints on states and control inputs for agent i, and C(zi, zj) ≤ 0 denote the

collision avoidance constraints between two agents i and j with positions zi and zj,

respectively. The position is assumed to be part of the state vector. The above

problem is solved for states xi, control inputs ui for agent i at each time step. For

ease of notation, we can define [N ] := {1, ..., N}. Thus, in order to ensure safe

navigation of agent i, we need to compute optimal control inputs such that agent i

does not collide with any other agent j ̸= i over the prediction horizon.



Chapter 3

Collision Avoidance for Polyhedral

Objects

3.1 Obstacle Occupancy Modeling

From the perspective of agent i, other agents act as obstacles which occupy some

space that is forbidden for it. The occupancy set is modelled as convex polyhedral

sets composed as union of multiple half-spaces. In particular, the space occupied by

obstacle m is represented as

Om = {p ∈ R3 : Amp ≤ bm}, m ∈ [M ], (3.1)

where M denotes the total number of obstacles, Am ∈ Rnm×3 and bm ∈ Rnm are

constant matrices and vectors that represent the position and orientation of the

obstacle, and nm is the number of half spaces required to model obstacle m. It is

assumed that any non-convex obstacle can be conservatively approximated to an

enclosed polyhedron.

As the agents are considered to be dynamic obstacles, the polyhedral representation

of each obstacle is also a function of time. As a result, agent i needs to know the

predicted occupancy sets of all other agents T steps into the future. This information

is not readily available. There are two main paradigms in the literature based on

how this information is accessed. In the distributed approach, agents exchange their

12
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optimal solution (future trajectory) with others. Thus, at each time step k, agent i

receives the presently computed MPC solution which includes future position and

orientation information of other agents. However, other agents may not follow the

current optimal trajectory and as a result, this approach is not robust to this future

deviation by other agents. In the decentralized approach, there is no inter-agent

communication, and most prior works assume that agent i predicts the future position

of other agents assuming that other agents will continue to move with their present

velocity. Thus, this assumption is rather naive and often leads to incorrect predictions

and collisions.

In this work, I propose a principled approach to robustify against such prediction

inaccuracies in both distributed and decentralized schemes. I begin by assuming that

at time k, the controlled agent i has access to anticipated future position of other

agents over the prediction horizon, i.e., it is aware of zj(k+ l|k) for l ∈ [T ], j ∈ [N ]. In

the distributed case, this information is shared by other agents and corresponds to the

solution of their MPC problem at the previous time step. In the decentralized case,

this information is predicted by the agent under the constant velocity assumption.

With regard to orientation, it is assumed that the present occupancy set of an obstacle

agent j, denoted by Oj
k|k and characterized by Aj(k) and bj(k), is known to agent i,

and the future orientation of agent j remains unchanged from its present orientation.

Under the above assumption, the uncertain obstacle space of agent j predicted at

time k for time step k + l is formally stated as

Oj
k+l|k = Oj

k|k + zj(k + l|k) + w
(l)
j , (3.2)

where w
(l)
j ∈ R3 is the difference between the true position and the anticipated

position of this agent l steps into the future. A similar set up with linearly perturbed

uncertainty sets was considered in Hakobyan et al. (2019) in the single-agent case.

While the probability distribution of w
(l)
j is unknown, the controlled agent has access

to samples of w
(l)
j from past trajectory as follows: at each time step k, when position

of an agent j is observed, it is compared with the predictions of the position of agent

j obtained in previous T time steps and compute the difference as samples of the

the uncertain parameter w
(l)
j , l ∈ [T ]. In other words, zj(k|k)− zj(k|k − q) is treated

as a sample of w
(q)
j which is the q-step prediction error. Thus, at time k, a set of
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samples of w
(l)
j , l ∈ [T ] is collected as described above. Now, the formulation of

data-driven distributionally robust collision avoidance constraints is described.

Given the uncertain occupancy set defined in (3.2), the collision avoidance constraint

is now stated as

F
(
zi(k + l|k), zj(k + l|k), w(l)

j

)
:=

dmin − dist
(
zi(k + l|k), Oj

k+l|k
)
≤ 0, (3.3)

where the dist function is the distance between the agent position zi(k + l|k) and
obstacle space Oj

k+l|k. The above constraint is required to hold for all neighbors

j ∈ [N ] and time l ∈ [T ] in the MPC problem of agent i at time k.

Reformulation in the deterministic setting

Before introducing the distributionally robust risk sensitive version of the above

constraints, I first present the reformulation of the above in the deterministic regime.

Consider the occupancy set Om defined in (3.1). The distance between an agent at

position zi and Om is given by

dist(zi,Om) := min
r∈Om

||zi − r||

= min
d
(||d|| : Am(zi + d) ≤ bm).

(3.4)

It is evident that the constraint (3.3) with the above definition of distance is non-

trivial to impose on the optimization problem since the distance function itself

involves solving an optimization problem. The following result from Zhang et al.

(2020) proposes an equivalent tractable form for these constraints by leveraging

convex duality.

Proposition 3.1 (Zhang et al. (2020)). For an obstacle set O = {p ∈ R3 : Amp ≤
bm}, we have

dist(zi,Om) ≥ 0 ⇐⇒

∃λ ≥ 0 : (Amzi − bm)⊺λ ≥ 0, ||(Am)⊺λ||2 ≤ 1. (3.5)
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Thus, if there exists λ satisfying the above constraints, then the collision constraint is

satisfied (the distance between the controlled agent and the obstacle is non negative).

As a result, these conditions can be encoded as constraints with λ being an additional

decision variable in the MPC formulation. I now introduce the distributionally robust

framework to appropriately handle the uncertain constraint (3.3).

3.2 Data-Driven Distributionally Robust Constraint

Formulation

Note that the constraint function F (zi, zj, wj) defined in (3.3) is uncertain with

the distribution of wj not being known. However, a collection of Ns samples of

wj is available with MPC controller of agent i denoted by {ŵj,n}n∈[Ns]. I leverage

these available samples to define data-driven distributionally-robust conditional

value-at-risk (CVaR) constraints on the function F as

sup
P∈Mθ

Ns

CVaRP
1−α [F (zi, zj, wj)] ≤ 0, (3.6)

where

• the CVaR of a random loss X with distribution P, is equal to the conditional

expectation of the loss within the α worst case quantile of the loss distribution,

i.e.,

CVaRP
1−α(X) := inf

z∈R

[
α−1E[(X + z)+]− z

]
, (3.7)

where (x)+ = max{x, 0}. Consequently, CVaR constraint aims to constrain

the value at the tail distribution.

• the set Mθ
Ns

is a family of probability distributions that are within a Wasser-

stein distance θ from the empirical distribution induced by the Ns samples

{ŵj,n}n∈[Ns]; the formal definition of the ambiguity set is omitted in the interest

of space and can be found in Hota et al. (2019); Hakobyan and Yang (2021).
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Following the definition of CVaR, the constraint (3.6) assumes the form:

sup
P∈Mθ

Ns

inf
t∈R

EP [(F (zi, zj, wj) + t)+ − tα
]
≤ 0. (3.8)

The above constraint is infinite-dimensional due to the supremum being over a family

of probability distributions. In the remainder of this subsection, it is shown how the

above constraint can be approximated and reformulated into a finite-dimensional

constraint which can be solved via off-the-shelf solvers.

First we observe that since (sup inf [ ]) ≤ (inf sup [ ]), the constraint

inf
t∈R

sup
P∈Mθ

Ns

EP [(F (zi, zj, wj) + t)+ − tα
]
≤ 0. (3.9)

is sufficient for (3.8) to hold true. Now, the inner supremum problem in the above

equation can be reformulated as shown in Hota et al. (2019) to an infimum problem,

which then combined with the the infimum over t yields the following set of constraints

that are sufficient for (3.8) to hold true:

λθθ − tα +
1

Ns

Ns∑
n=1

sn ≤ 0, (3.10a)

sn≥ sup
wj∈Ωj

[F (zi, zj, wj) +t−λθ||wj −ŵj,n||2], n ∈ [Ns], (3.10b)

sn ≥ 0, t ∈ R, λθ ≥ 0,

where θ is the radius of the ambiguity set. I now focus on reformulating the semi-

infinite constraint (3.10b) which involves an optimization problem over the support

of wj denoted by Ωj in the following two major steps.

Step 1: Reformulation of (3.10b).

From the definition of the constraint function F in (3.3), equation (3.10b) is expressed

for sample n as

sn ≥ sup
wj∈Ωj

[
dmin − dist

(
zi,Oj

)
+ t− λθ||wj −ŵj,n||2

]
= dmin + t− inf

wj∈Ωj

[
dist

(
zi,Oj

)
+ λθ||wj −ŵj,n||2

]
.
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Based on the representation (3.1), when Oj
k|k = {p ∈ R3|Ap ≤ b}, then the distance

function in the above equation is given by

min ||t||

s.t. A (zi + t− zj − wj) ≤ b, (3.11)

and following the strong duality result in Proposition 3.1, it can be stated equivalently

as

max
λ≥0

[A(zi − zj − wj)− b]⊺ λ

s.t. ||A⊺λ||2 ≤ 1. (3.12)

Substituting the above in the inequality involving sn yields

sn ≥dmin + t− inf
wj∈Ωj

[
max

λ≥0, ||A⊺λ||2≤1

{
[A(zi − zj − wj)

− b]⊺λ
}
+ λθ||wj − ŵj,n||2

]
. (3.13)

Once again, note that since (sup inf [ ]) ≤ (inf sup [ ]), the inequality

sn ≥dmin + t− max
λ≥0, ||A⊺λ||2≤1

[
inf

wj∈Ωj

{[
A(zi − zj − wj)

− b
]⊺
λ+ λθ||wj − ŵj,n||2

}]
, (3.14)

is sufficient for (3.13) to hold.

Rearranging the equations, we obtain

sn ≥dmin + t− max
λ≥0, ||A⊺λ||2≤1

(
[A(zi − zj)− b]⊺λ

+ inf
wj∈Ωj

[
λθ||wj − ŵj,n||2 − w⊺

j (A
⊺λ)

])
. (3.15)

Step 2: Reformulation of the infimum with respect to wj.
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The infimum term with respect to wj can be written as

inf
wj∈Ωj

[
− (λ⊺Awj − λθ||wj − ŵj,n||2)

]
, (3.16)

⇐⇒ − sup
wj∈Ωj

[
λ⊺Awj − λθ||wj − ŵj,n||2

]
. (3.17)

When the support of wj is a polyhendron, i.e., Ωj = {w ∈ R3|Cjw ≤ hj}, the authors
in Hota et al. (2019) showed that the supremum term above is equivalent to

min
ηj,n≥0

(A⊺λ− C⊺
j ηj,n)

⊺ŵj,n + η⊺j,nhj

s.t. ||A⊺λ− C⊺
j ηj,n||2 ≤ λθ. (3.18)

As a result, (3.17) can be stated equivalently as

max
ηj,n≥0

−
[
(A⊺λ− C⊺

j ηj,n)
⊺ŵj,n + η⊺j,nhj

]
s.t. ||A⊺λ− C⊺

j ηj,n||2 ≤ λθ. (3.19)

Consequently, (3.15) can be stated equivalently as

sn ≥dmin + t− max
λ≥0, ||A⊺λ||2≤1

(
[A(zi − zj)− b]⊺λ

+ max
ηj,n≥0,

||A⊺λ−C⊺
j ηj,n||2≤λθ

−[(A⊺λ− C⊺
j ηj,n)

⊺ŵj,n + η⊺j,nhj]
)
. (3.20)

Since the maximum terms on the R.H.S are preceded by a negative sign, the following

constraints are sufficient to guarantee that the constraint in (3.20) holds:

sn ≥ dmin + t−
(
[A(zi − zj)− b]⊺λ

− [(A⊺λ− C⊺
j ηj,n)

⊺ŵj,n + η⊺j,nhj]

)
, (3.21a)

λ ≥ 0, ||A⊺λ||2 ≤ 1, (3.21b)

ηj,n ≥ 0, ||A⊺λ− C⊺
j ηj,n||2 ≤ λθ. (3.21c)
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When the support Ωj is not known and is assumed to be R3, we do not need the

multipliers ηj,n, and consequently, the following set of constraints

sn ≥ dmin + t−
(
[A(zi − zj)− b]⊺λ− [(A⊺λ)⊺ŵj,n]

)
, (3.22a)

λ ≥ 0, ||A⊺λ||2 ≤ 1, ||A⊺λ||2 ≤ λθ. (3.22b)

are sufficient to guarantee that (3.20) holds.

To summarize, the original distributionally CVaR collision avoidance constraint (3.6)

can be approximated as

λθθ − tα +
1

Ns

Ns∑
n=1

sn ≤ 0, (3.23a)

dmin + t− sn ≤ [A(zi − zj)− b]⊺λ− [λ⊺Aω̂j,n] (3.23b)

λ ≥ 0, ||A⊺λ||2 ≤ min(1, λθ), (3.23c)

λθ ≥ 0, t ∈ R, sn ≥ 0 ∀n ∈ [Ns]. (3.23d)

Thus, the MPC problem for agent i has the above set of constraints for each neighbor

j with zi, zj, A, b being replaced by zi(k + l|k), zj(k + l|k), Aj(k), bj(k) for all time

steps over the horizon l ∈ [T ].



Chapter 4

Simulation Results

First, I use a numerical simulator with nonlinear dynamics discretized with sampling

time 1 ms. The sampling time for MPC is chosen to be 0.1 s. In this setup, all

agents solve the MPC problem synchronously and the numerical simulator gives the

next state of the drone. All these independent processes run on a workstation with

AMD Ryzen 5800H chipset and 16GB RAM. In particular, Python multiprocessing

module is used to launch parallel nodes for each agent interacting with the common

simulation. The odometry data as well as predictions are communicated among

each other using Robot Operating System (ROS). The MPC problem is solved

using a nonlinear programming solver IPOPT Wächter and Biegler (2006). This

implementation uses the MA27 as the linear solver for IPOPT and the “do-mpc”

interface Lucia et al. (2017) for the solver, that also uses CasADi package Andersson

et al. (2019).

Subsequently, for more realistic dynamics, Gazebo physics simulations are used for

the AsTec Firefly hexacopter model using RotorS for low-level control Furrer et al.

(2016). Gazebo runs on the PC interacting with each agents for actuator commands

and returning the odometry data.

20
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4.1 Distributed Setting

In this subsection, I demonstrate my proposed formulation on numerical simulations

in a distributed setting. To simplify the analysis, I start with a case with two agents,

trying to cross each other on a straight path. Each agent considers itself to be a

point mass, whereas the surrounding obstacles are assumed to be polyhedral. Each

obstacle/agent is assumed to be a rectangular prism with a square cross-section of 2

m. The length of prism is assumed very high to visualise planar collision avoidance.

Unless stated otherwise, all subsequent results are obtained with a sample size of

Ns = 10 and the prediction horizon of T = 20 steps.

Figure 4.1 shows the trajectory of both agents when the risk tolerance parameter (of

the CVaR function) α = 0.1 and the Wasserstein radius θ = 0.001. The mean and

standard deviation in errors in the predictions, i.e, the actual position of an obstacle

agent and the optimal MPC solution of that agent l steps before, is illustrated in

Figure 4.2. The figure shows that deviations increases across the time horizon and

does not necessarily have zero mean. Therefore, it is necessary to robustify the

trajectories against these errors.

Figure 4.1: Trajectory as seen by
agent 1 for α = 0.1 and θ = 0.001.

Figure 4.2: Prediction errors
across time horizon.

Figure 4.3 depicts the average value of the minimum distance between the agents

over 50 runs. Higher values of θ result in larger ambiguity sets around the collected

samples which leads to more robust trajectories; this is observed from the figure

which shows that average minimum distance is larger when θ is larger. As α increases,

agents are more tolerant towards risk of collision, and as a result opt for risky
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trajectories which lead to reduced value of average minimum distance. The behaviour

is more sensitive to θ for smaller values of α. The integration of distance from goal,

in figure 4.4 shows weakly increasing trend, denoting that the agents move closer to

each other but take a slightly longer route.

Figure 4.3: Average minimum dis-
tance with increasing α values.

Figure 4.4: Integration of distance
with increasing α values.

4.2 Variations with added noise

Both, observed states and the predictions now contain a random noise based on

Gaussian distribution. The standard deviation of the distribution is varied to compare

the effect of changing noise values. The standard deviation for the prediction noise

is fixed to be three times of that for the state observations. Hence, for case with std.

dev. of 1m in state observation, the predictions contain noise with std. dev. of 3m.

For this case, we have θ = 10−3, with a time horizon of 20, and sample size of 10.

Two values of α = 0.05, 0.5 are used.

We can see from figure 4.5, that the percentage of collisions is zero for low α value,

whereas we begin to see collisions for higher α value with higher state noise of 0.6m

standard deviation. The higher noise levels of 0.8 are unsustainable for α = 0.5.

The figure 4.6 shows the average of the minimum distance between the agents. It

can be seen that with increasing levels of noise, the low α configuration takes more

risk-averse paths leading to higher separation. The sudden dip in the plot for α = 0.5

is caused due to higher collision rate. In the figure 4.7, the integration of the distance
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Figure 4.5: Collision percentage with increasing noise level.

from the goal position, increases with increasing noise depicting longer paths. Drop

in the value for α = 0.5 occur as only the non-colliding test cases are considered.

Figure 4.6: Avg. min. distance
with increasing noise level.

Figure 4.7: Integration of distance
with increasing noise level.

Figure 4.8, shows the mean of errors across time horizon for increasing levels of

noise. As expected, the standard deviation in error increases with higher levels of

noise. Also, as seen in figure 4.9, for noise levels of 0.4, we see that the added noise

dominated the error in prediction, giving uniform and high standard deviation across

the time horizon.
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Figure 4.8: Prediction errors with
increasing noise level.

Figure 4.9: Prediction errors
across time horizon..

4.3 Comparison with the baseline

In this subsection, I compare my formulation with the baseline deterministic MPC

solutions in both distributed and decentralised settings with two agents. In the

distributed setting, each agent has the access to the optimal MPC trajectories of

other agents and solves a deterministic MPC problem avoiding collision with the

predicted trajectories. In the decentralised setting, an agent solves a deterministic

MPC problem avoiding collision with the predicted trajectories of others under

a constant velocity assumption. These baseline solutions are compared with the

data-driven distributionally robust CVaR constrained solutions. To increase the level

of uncertainty, I add Gaussian noise to the perceived states and predictions of other

agents at each time step. The most recent samples based on user-specified sample

size are used, with α = 0.05 and θ = 0.001. Fifty simulations with each parameter

configuration are conducted.

As evident from Figure 4.10, collisions occur for the baseline MPC as the noise levels

increase; with the collision percentage being higher for the decentralised case which

incorrectly predicts the future positions of other agents based on a constant velocity

assumption. The proposed formulation (CVaR-MPC) does not give collision even

for very high noise standard deviation in any of the simulations. In Figure 4.11,

average of minimum distance between agents with increasing noise levels is plotted.

We can observe that CVaR-MPC takes a more risk-averse approach, causing higher

separation as the level of uncertainty increases. In contrast, baseline approaches lead
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Figure 4.10: Percentage of colli-
sions with increasing noise values (

α = 0.05 and θ = 0.001).

Figure 4.11: Avgerage minimum
distance with increasing noise values

(for α = 0.05 and 0.001).

to a higher proportion of collisions leading to a smaller average minimum distance.

Thus, the distributionally robust approach enables us to robustify MPC solutions

even with a relatively small samples size.

Table 4.1: Computation Time (in milliseconds)

Time Horizon
Sample Size

10 20 30

5 19± 2ms 40± 13ms 63± 18ms
10 27± 8ms 60± 18ms 102± 76ms
20 41± 12ms 113± 35ms 184± 127ms

4.4 Computation Time

Table 4.1 shows the computation time for different values of sample size for CVaR

constraints and prediction horizon of the MPC. This is obtained from the previous

numerical simulation setting for the two-agent case. We can observe that most of

the configurations have computation the time less than 0.1s or 100ms, which is the

step size of MPC optimization. The mean and standard deviation of computation

time is higher for increasing time horizon and sample size.
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Figure 4.12: Snapshot of the Gazebo simulation.

Figure 4.13: 2D visualisation of
the first mission.

Figure 4.14: 3D visualisation
of the first mission. Video of
the mission can be accessed at

https://bit.ly/3AFp4Uc

4.5 Gazebo Simulations

For the realistic Gazebo simulations (see fig. 4.12), I validate this approach on similar

position exchange mission, as demonstrated in previous reports. The value of α is

fixed to 0.1, with a sample size of 10, without adding synthetic noise.

https://bit.ly/3AFp4Uc
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In the first mission, a team of three drones needs to reach the position of other three

drones. Figures 4.13 and 4.14 depict the 2D and 3D visualisations of the trajectory.

In the second case, six agents in a rectangular formation must reach the opposite

side of the rectangle. Similarly, figures 4.15 and 4.16 show the trajectories of all the

agents.

Figure 4.15: 2D visualisation of
the second mission.

Figure 4.16: 3D visualisation
of the second mission. Video of
the mission can be accessed at

https://bit.ly/3D4o9iW

4.6 Embedded Implementation

To demonstrate the real-world use case, I implemented the code on commonly

used embedded platform, Raspberry Pi. Figure 4.17 shows the workflow of the

implementation. Each Raspberry Pi run independently acting as an agent, while the

Gazebo simulation runs on the PC. All the communication is handled using ROS

messages, which is also used commonly in experimental robotics. The Raspberry

Pi is wirelessly connected to the computer by connecting to a shared local network.

Figures 4.18 and 4.19 show the 2D and 3D trajectories computed on the Raspberry

Pi. I found the computation time for each step to be 0.54 s with a standard deviation

of 0.18 s. Though this is not directly implementable on the experimental platform at

this stage, this demonstrates the practical usability of my approach. Optimised C

code with sophisticated solvers and more powerful embedded platform would enable

using this formulation on real-world robots.

https://bit.ly/3D4o9iW
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Figure 4.17: Workflow for Raspberry Pi implementation.

Figure 4.18: 2D visualisation of
mission using Raspberry Pi.

Figure 4.19: 3D visualisation of
mission using Raspberry Pi.
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Conclusion

In this thesis, I presented a novel data-driven risk sensitive collision avoidance

constraint formulation for safe multi-robot navigation in both distributed and decen-

tralised settings. The proposed approach robustifies MPC solutions against errors

in the predictions of surrounding objects in terms of distributional robustness guar-

anteed by the Wasserstein metric by leveraging data that is collected online during

execution. CVaR-based risk constraints capture the proximity to the uncertain

polyhedral obstacles and provides the ability for the user to dictate the risk-appetite

of the robot. The performance of the proposed approach was examined via numerical

simulations with multiple aerial robots, the influence of risk tolerance level and size of

the ambiguity sets was illustrated in detail, and further validated on realistic Gazebo

simulations. The computation time of the resulting MPC problem is sufficiently small

to be deployed in practice. In future, I aim to explore other classes of ambiguity sets

for this task that may reduce the computational burden while preserving the desired

robustness properties.

The code for this work has been hosted on the Github on https://github.com/

anavsalkar/cvar dist mpc repository. This work is currently under review for Inter-

national Conference on Robotics and Automation (ICRA) 2023. This project also

won the “Most Innovative Project” award in the Student Innovation Grant Program

by AI & Robotics Park, IISc. Bangalore.
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Soloperto, R., Köhler, J., Allgöwer, F., and Müller, M. A. (2019). Collision avoidance

for uncertain nonlinear systems with moving obstacles using robust model predictive

control. In 2019 18th European Control Conference (ECC), pages 811–817. IEEE.



Bibliography 33
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